Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Virol ; 97(3): e0003823, 2023 03 30.
Article in English | MEDLINE | ID: covidwho-2242074

ABSTRACT

Coronaviruses infect a wide variety of host species, resulting in a range of diseases in both humans and animals. The coronavirus genome consists of a large positive-sense single-stranded molecule of RNA containing many RNA structures. One structure, denoted s2m and consisting of 41 nucleotides, is located within the 3' untranslated region (3' UTR) and is shared between some coronavirus species, including infectious bronchitis virus (IBV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2, as well as other pathogens, including human astrovirus. Using a reverse genetic system to generate recombinant viruses, we investigated the requirement of the s2m structure in the replication of IBV, a globally distributed economically important Gammacoronavirus that infects poultry causing respiratory disease. Deletion of three nucleotides predicted to destabilize the canonical structure of the s2m or the deletion of the nucleotides corresponding to s2m impacted viral replication in vitro. In vitro passaging of the recombinant IBV with the s2m sequence deleted resulted in a 36-nucleotide insertion in place of the deletion, which was identified to be composed of a duplication of flanking sequences. A similar result was observed following serial passage of human astrovirus with a deleted s2m sequence. RNA modeling indicated that deletion of the nucleotides corresponding to the s2m impacted other RNA structures present in the IBV 3' UTR. Our results indicated for both IBV and human astrovirus a preference for nucleotide occupation in the genome location corresponding to the s2m, which is independent of the specific s2m sequence. IMPORTANCE Coronaviruses infect many species, including humans and animals, with substantial effects on livestock, particularly with respect to poultry. The coronavirus RNA genome consists of structural elements involved in viral replication whose roles are poorly understood. We investigated the requirement of the RNA structural element s2m in the replication of the Gammacoronavirus infectious bronchitis virus, an economically important viral pathogen of poultry. Using reverse genetics to generate recombinant IBVs with either a disrupted or deleted s2m, we showed that the s2m is not required for viral replication in cell culture; however, replication is decreased in tracheal tissue, suggesting a role for the s2m in the natural host. Passaging of these viruses as well as human astrovirus lacking the s2m sequence demonstrated a preference for nucleotide occupation, independent of the s2m sequence. RNA modeling suggested deletion of the s2m may negatively impact other essential RNA structures.


Subject(s)
Infectious bronchitis virus , Mamastrovirus , Mutagenesis, Insertional , Animals , Humans , 3' Untranslated Regions/genetics , Chickens/virology , Infectious bronchitis virus/genetics , Mamastrovirus/genetics , Mutagenesis, Insertional/genetics , Poultry Diseases/virology , RNA, Viral/genetics , Virus Replication/genetics , RNA Stability/genetics , Sequence Deletion/genetics
2.
J Am Heart Assoc ; 10(9): e019756, 2021 05 04.
Article in English | MEDLINE | ID: covidwho-1088348

ABSTRACT

Background COVID-19 may present with a variety of cardiovascular manifestations, and elevations of biomarkers reflecting myocardial injury and stress are prevalent. SARS-CoV-2 has been found in cardiac tissue, and myocardial dysfunction post-COVID-19 may occur. However, the association between SARS-CoV-2 RNA in plasma and cardiovascular biomarkers remains unknown. Methods and Results COVID MECH (COVID-19 Mechanisms) was a prospective, observational study enrolling consecutive, hospitalized patients with laboratory-confirmed infection with SARS-CoV-2 and symptoms of COVID-19. Biobank plasma samples used to measure SARS-CoV-2 RNA and cardiovascular and inflammatory biomarkers were collected in 123 patients at baseline, and in 96 patients (78%) at day 3. Patients were aged 60±15 (mean ± SD) years, 71 (58%) were men, 68 (55%) were White, and 31 (25%) received mechanical ventilation during hospitalization. SARS-CoV-2 RNA was detected in plasma from 48 (39%) patients at baseline. Patients with viremia were more frequently men, had more diabetes mellitus, and lower oxygen saturation. Patients with viremia had higher concentrations of interleukin-6, C-reactive protein, procalcitonin, and ferritin (all <0.001), but comparable levels of cTnT (cardiac troponin T; P=0.09), NT-proBNP (N-terminal pro-B-type natriuretic peptide; P=0.27) and D-dimer (P=0.67) to patients without viremia. SARS-CoV-2 RNA was present in plasma at either baseline or day 3 in 50 (52%) patients, and these patients experienced increase from baseline to day 3 in NT-proBNP and D-dimer concentrations, while there was no change in cTnT. Conclusions SARS-CoV-2 viremia was associated with increased concentrations of inflammatory, but not cardiovascular biomarkers. NT-proBNP and D-dimer, but not cTnT, increased from baseline to day 3 in patients with viremia. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT04314232.


Subject(s)
Biomarkers/blood , COVID-19 , Inflammation/blood , SARS-CoV-2/isolation & purification , Viremia , C-Reactive Protein/analysis , COVID-19/blood , COVID-19/diagnosis , COVID-19/epidemiology , Correlation of Data , Female , Ferritins/blood , Fibrin Fibrinogen Degradation Products/analysis , Humans , Inflammation/virology , Interleukin-6/blood , Male , Middle Aged , Natriuretic Peptide, Brain/blood , Norway/epidemiology , Peptide Fragments/blood , Procalcitonin/blood , Troponin T/blood , Viremia/diagnosis , Viremia/etiology , Viremia/immunology
3.
Nat Commun ; 11(1): 5284, 2020 10 20.
Article in English | MEDLINE | ID: covidwho-882895

ABSTRACT

Here, we randomized 53 patients hospitalized with coronavirus disease 2019 (COVID-19) to hydroxychloroquine therapy (at a dose of 400 mg twice daily for seven days) in addition to standard care or standard care alone (ClinicalTrials.gov Identifier, NCT04316377). All severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive patients 18 years of age or older were eligible for study inclusion if they had moderately severe COVID-19 at admission. Treatment with hydroxychloroquine did not result in a significantly greater rate of decline in SARS-CoV-2 oropharyngeal viral load compared to standard care alone during the first five days. Our results suggest no important antiviral effect of hydroxychloroquine in humans infected with SARS-CoV-2.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Hydroxychloroquine/therapeutic use , Pneumonia, Viral/drug therapy , Aged , COVID-19 , Coronavirus Infections/mortality , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/mortality , SARS-CoV-2 , Treatment Outcome , Viral Load/drug effects , COVID-19 Drug Treatment
4.
Trials ; 21(1): 485, 2020 Jun 05.
Article in English | MEDLINE | ID: covidwho-617180

ABSTRACT

OBJECTIVES: The hypothesis of the study is that treatment with hydroxychloroquine sulphate in hospitalised patients with coronavirus disease 2019 (Covid-19) is safe and will accelerate the virological clearance rate for patients with moderately severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) when compared to standard care. Furthermore, we hypothesize that early treatment with hydroxychloroquine sulphate is associated with more rapid resolve of clinical symptoms as assessed by the National Early Warning Score 2 (NEWS2), decreased admission rate to intensive care units and mortality, and improvement in protein biomarker profiles (C-reactive protein, markers of renal and hepatic injury, and established cardiac biomarkers like cardiac troponin and B-type natriuretic peptide). TRIAL DESIGN: The study is a two-arm, open label, pragmatic randomised controlled group sequential adaptive trial designed to assess the effect on viral loads and clinical outcome of hydroxychloroquine sulphate therapy in addition to standard care compared to standard care alone in patients with established Covid-19. By utilizing resources already paid for by the hospitals (physicians and nurses in daily clinical practice), this pragmatic trial can include a larger number of patients over a short period of time and at a lower cost than studies utilizing traditional randomized controlled trial designs with an external study organization. The pragmatic approach will enable swift initiation of randomisation and allocation to treatment. PARTICIPANTS: Patients will be recruited from all inpatients at Akershus University Hospital, Lørenskog, Norway. Electronic real-time surveillance of laboratory reports from the Department of Microbiology will be examined regularly for SARS-CoV-2 positive subjects. All of the following conditions must apply to the prospective patient at screening prior to inclusion: (1) Hospitalisation; (2) Adults 18 years or older; (3) Moderately severe Covid-19 disease (NEWS2 of 6 or less); (4) SARS-CoV-2 positive nasopharyngeal swab; (5) Expected time of hospitalisation > 48 hours; and (6) Signed informed consent must be obtained and documented according to Good Clinical Practice guidelines of the International Conference on Harmonization, and national/local regulations. Patients will be excluded from participation in the study if they meet any of the following criteria: (1) Requiring intensive care unit admission at screening; (2) History of psoriasis; (3) Known adverse reaction to hydroxychloroquine sulphate; (4) Pregnancy; or (5) Prolonged corrected QT interval (>450 ms). Clinical data, including standard hospital biochemistry, medical therapy, vital signs, NEWS2, and microbiology results (including blood culture results and reverse transcriptase polymerase chain reaction [RT-PCR] for other upper airway viruses), will be automatically extracted from the hospital electronic records and merged with the study specific database. INTERVENTION AND COMPARATOR: Included patients will be randomised in a 1:1 ratio to (1) standard care with the addition of 400 mg hydroxychloroquine sulphate (PlaquenilTM) twice daily for seven days or (2) standard care alone. MAIN OUTCOMES: The primary endpoint of the study is the rate of decline in SARS-CoV-2 viral load in oropharyngeal samples as assessed by RT-PCR in samples collected at baseline, 48 and 96 hours after randomization and administration of drug for the intervention arm. Secondary endpoints include change in NEWS2 at 96 hours after randomisation, admission to intensive care unit, mortality (in-hospital, and at 30 and 90 days), duration of hospital admission, clinical status on a 7-point ordinal scale 14 days after randomization ([1] Death [2] Hospitalised, on invasive mechanical ventilation or extracorporeal membrane oxygenation [3] Hospitalised, on non-invasive ventilation or high flow oxygen devices [4] Hospitalized, requiring supplemental oxygen [5] Hospitalised, not requiring supplemental oxygen [6] Not hospitalized, but unable to resume normal activities [7] Not hospitalised, with resumption of normal activities), and improvement in protein biomarker profiles (C-reactive protein, markers of renal and hepatic injury, and established cardiac biomarkers like cardiac troponin and B-type natriuretic peptide) at 96 hours after randomization. RANDOMISATION: Eligible patients will be allocated in a 1:1 ratio, using a computer randomisation procedure. The allocation sequence has been prepared by an independent statistician. BLINDING (MASKING): Open label randomised controlled pragmatic trial without blinding, no active or placebo control. The virologist assessing viral load in the oropharyngeal samples and the statistician responsible for analysis of the data will be blinded to the treatment allocation for the statistical analyses. NUMBERS TO BE RANDOMIZED (SAMPLE SIZE): This is a group sequential adaptive trial where analyses are planned after 51, 101, 151 and 202 completed patients, with a maximum sample size of 202 patients (101 patients allocated to intervention and standard care and 101 patients allocated to standard care alone). TRIAL STATUS: Protocol version 1.3 (March 26, 2020). Recruitment of first patient on March 26, 2020, and 51 patients were included as per April 28, 2020. Study recruitment is anticipated to be completed by July 2020. TRIAL REGISTRATION: ClinicalTrials.gov number, NCT04316377. Trial registered March 20, 2020. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Betacoronavirus , Coronavirus Infections/drug therapy , Hydroxychloroquine/therapeutic use , Pneumonia, Viral/drug therapy , Pragmatic Clinical Trials as Topic , COVID-19 , Coronavirus Infections/virology , Female , Hospitalization , Humans , Male , Norway , Pandemics , Pneumonia, Viral/virology , Research Design , SARS-CoV-2 , Viral Load , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL